Acta Cryst. (1997). C53, 1098-1099

2,3-Dihydro-3-phenyl-1 H -isoindol-1-one at 220 K

Hamish McNab, Simon Parsons and David A. Shannon
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: s.parsons@ed.ac.uk

(Received 25 February 1997; accepted 25 February 1997)

Abstract

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}$, forms hydrogen-bonded dimers in the solid state; its geometry correlates well

 with those of related molecules.
Comment

In the structural literature of the 2,3-dihydroisoindol-1one (phthalimidine) system the majority of simple examples are either N-substituted [(1)-(3); Carlström, Hacksell, Jönsson \& Söderholm, 1983; Fawcett, Kemmitt, Russell, Serindag \& Gok, 1993; Ravikumar, 1994], or have a hydroxy substituent at the 3-position [(4) and (5); Ohrt, Tsoucaris-Kupfer \& Lechat, 1978; Rodier, Martin, Miocque, Mettey \& Vierfond, 1988]. We report here the crystal structure of the 3-phenyl derivative, (6), to serve as a model for the family of N -unsubstituted 3-aryl derivatives.

(1)

(2)

(3)

(4)

(5)

(6)

Bond lengths and angles of the five-membered ring of (6) are effectively identical with those of the other N unsubstituted derivatives (4) and (5), and so substitution at C3 apparently has little influence. N-alkyl, (1), and particularly N-aryl, (2) and (3), derivatives are also very similar to (6), except for $\mathrm{C} 1-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{C} 3$, which
are generally longer [for example, in (3), $\mathrm{C} 1-\mathrm{N} 2$ is 1.486 (7) and $\mathrm{N} 2-\mathrm{C} 3$ is 1.391 (7) \AA]. There appears to be little variation in the bond angles in the fivemembered rings of all six structures, while in the fused six-membered ring the angles at C 4 and C 7 are both less than 118°, an effect previously noted for (1). The maximum deviations from planarity in the five- and sixmembered rings of the isoindole system are 0.007 (1) and 0.001 (1) A , respectively, and the angle between these planes is $1.59(11)^{\circ}$ [cf. $2.1(4)^{\circ}$ in (1)].
'Packing in (6) is dominated by the formation of hydrogen-bonded dimers about a crystallographic inversion centre (Fig. 1). The N. . O distance is 2.861 (2) \AA.

Fig. 1. Formation of hydrogen-bonded dimers of (6). Ol^{i} is related to Ol by the symmetry operation ($\frac{1}{2}-x, \frac{1}{2}-y, 1-z$). Displacement ellipsoids enclose 50% probability surfaces. H atoms are represented by spheres of arbitrary radii.

Experimental

Compound (6) was prepared by the condensation of 2-benzoylbenzoic acid with formamide in the presence of formic acid (Vollmann, Bredereck \& Bredereck, 1972).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}$
$M_{r}=209.24$
Monoclinic C2/c
$a=16.3820(8) \AA$
$b=6.1648$ (6) \AA
$c=21.6676(12) \AA$
$\beta=104.835(3)^{\circ}$
$V=2115.3(3) \AA^{3}$
$Z=8$
$D_{x}=1.314 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

> Cu $K \alpha$ radiation
> $\lambda=1.54184 \AA$
> Cell parameters from 40 \quad reflections
> $\theta=20-22^{\circ}$
> $\mu=0.659 \mathrm{~mm}^{-1}$
> $T=220(2) \mathrm{K}$
> Lath developed in (101) $0.43 \times 0.23 \times 0.04 \mathrm{~mm}$ Colourless

Data collection

Stoe Stadi-4 diffractometer equipped with an Oxford Cryosystems variable temperature device (Cosier \& Glazer, 1986)
$\omega-\theta$ scans
Absorption correction: none
3393 measured reflections
1535 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.094$
$S=1.048$
1533 reflections
146 parameters
H atoms not refined
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0549 P)^{2}\right. \\ & +0.058 P]\end{aligned}$
$+0.058 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.00 \mathrm{I}$
1238 reflections with
$I>2 \sigma(l)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=60.05^{\circ}$
$h=-18 \rightarrow 16$
$k=-6 \rightarrow 6$
$l=-24 \rightarrow 15$
3 standard reflections frequency: 120 min intensity decay: 5\%
$\Delta \rho_{\text {max }}=0.135 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.132 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0012 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA \mathrm{A}^{\circ}{ }^{\circ}$)

$\mathrm{Cl}-\mathrm{O} 1$	$1.238(2)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}$	$1.384(2)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.346(2)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 4$	$1.385(2)$
$\mathrm{C} 1-\mathrm{C} 7 \mathrm{a}$	$1.479(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.456(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.386(3)$
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}$	$1.513(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.380(2)$
$\mathrm{C} 3-\mathrm{C} 31$	$1.516(2)$	$\mathrm{C} 7-\mathrm{C} 7 \mathrm{a}$	$1.388(2)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{N} 2$	$125.8(2)$	$\mathrm{C} 4-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 3$	$129.8(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 7 \mathrm{a}$	$127.56(15)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 4-\mathrm{C} 5$	$117.7(2)$
$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 7 \mathrm{a}$	$106.60(14)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.5(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$114.19(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$120.9(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{a}$	$101.40(12)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 7 \mathrm{a}$	$117.6(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 31$	$113.16(13)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 7$	$121.6(2)$
$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 3-\mathrm{C} 31$	$113.71(13)$	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 1$	$108.30(14)$
$\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 4$	$120.7(2)$	$\mathrm{C} 7-\mathrm{C} 7 \mathrm{a}-\mathrm{Cl}$	$130.1(2)$
$\mathrm{C} 7 \mathrm{a}-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 3$	$109.50(14)$		

The presence of the low-temperature device limited $2 \theta_{\text {max }}$ to 120°.
Data collection: DIF4 (Stoe \& Cie, 1990a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1990b). Program(s) used to solve structure: SHELXTL (Sheldrick, 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

The authors thank EPSRC for provision of a fourcircle diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1321). Services for accessing these data are described at the back of the journal.

References

Carlström, D., Hacksell, I., Jönsson, N. A. \& Söderholm, M. (1983). Acta Chem. Scand. Ser. B, 37, 769-773.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Fawcett, J., Kemmitt, R. D. W., Russell, D. R., Serindag, O. \& Gok, Y. (1993). Acta Cryst. C49, 1434-1436.

Ohrt, J. M., Tsoucaris-Kupfer, D. \& Lechat, P. (1978). Acta Cryst. B34, 2059-2061.
Ravikumar, K. (1994). Acta Cryst. C50, 589-592.
Rodier, P. N., Martin, C., Miocque, M., Mettey, Y. \& Vierfond, J.-M. (1988). Acta Cryst. C44, 2131-2133.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe \& Cie, Darmstadt, Germany.

Vollmann, H.-J. W., Bredereck, K. \& Bredereck, H. (1972). Chem. Ber. 105, 2933-2954.

Acta Cryst. (1997). C53, 1099-1101

3,4-Etheno-5-methoxymethyl-2'-deoxycytidine \dagger

Gerald F. Audette, ${ }^{a}$ Waidi M. Zoghaib, ${ }^{b}$ Guy Tourigny, ${ }^{b}$ Sagar V. Gupta ${ }^{c}$ and Louis T. J. Delbaere ${ }^{a}$
${ }^{a}$ Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5, ${ }^{b}$ Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and ${ }^{\text {c }}$ Department of Veterinary Physiological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4. E-mail: delbaere@sask.usask.ca

(Received 6 November 1996; accepted 7 March 1997)

Abstract

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5}$, the deoxyribose sugar ring adopts a C^{\prime}-exo- C^{\prime}-endo symmetrical halfchair conformation (${ }_{2}^{3} T$), with pseudorotational parameters of $P=2.54(1)^{\circ}$ and $\tau_{m}=27.82(7)^{\circ}$. The deoxyribose sugar ring is in the anticlinal ($-a c$) conformation with respect to the base $\left[\chi=-93.2(4)^{\circ}\right]$. The exocyclic side chain at C^{\prime} is in the $g g$ conformation [$\gamma=$ $57.2(3)^{\circ}$]. The methoxymethyl side chain at C5 is oriented towards the exocyclic side chain at $\mathrm{C}^{\prime}{ }^{\prime}$.

Comment

The title compound (3,4-etheno-MMdCyd), (I), is a structural analogue of 5-methoxymethyl-2'-deoxy-
\dagger Alternative name: 6-(4-hydroxy-5-hydroxymethyltetrahydrofuran-2-yl)-8-(methoxymethyl)imidazo[1,2-c][1,3]diazin-5(6H)-one.

