Acta Cryst. (1997). C53, 1098-1099

2,3-Dihydro-3-phenyl-1*H*-isoindol-1-one at 220 K

HAMISH McNab, SIMON PARSONS AND DAVID A. SHANNON

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: s.parsons@ed.ac.uk

(Received 25 February 1997; accepted 25 February 1997)

Abstract

The title compound, $C_{14}H_{11}NO$, forms hydrogen-bonded dimers in the solid state; its geometry correlates well with those of related molecules.

Comment

In the structural literature of the 2,3-dihydroisoindol-1-one (phthalimidine) system the majority of simple examples are either *N*-substituted [(1)–(3); Carlström, Hacksell, Jönsson & Söderholm, 1983; Fawcett, Kemmitt, Russell, Serindag & Gok, 1993; Ravikumar, 1994], or have a hydroxy substituent at the 3-position [(4) and (5); Ohrt, Tsoucaris-Kupfer & Lechat, 1978; Rodier, Martin, Miocque, Mettey & Vierfond, 1988]. We report here the crystal structure of the 3-phenyl derivative, (6), to serve as a model for the family of *N*-unsubstituted 3-aryl derivatives.

Bond lengths and angles of the five-membered ring of (6) are effectively identical with those of the other Nunsubstituted derivatives (4) and (5), and so substitution at C3 apparently has little influence. N-alkyl, (1), and particularly N-aryl, (2) and (3), derivatives are also very similar to (6), except for C1—N2 and N2—C3, which D_m not measured

are generally longer [for example, in (3), C1—N2 is 1.486 (7) and N2—C3 is 1.391 (7) Å]. There appears to be little variation in the bond angles in the five-membered rings of all six structures, while in the fused six-membered ring the angles at C4 and C7 are both less than 118°, an effect previously noted for (1). The maximum deviations from planarity in the five- and six-membered rings of the isoindole system are 0.007 (1) and 0.001 (1) Å, respectively, and the angle between these planes is 1.59 (11)° [cf. 2.1 (4)° in (1)].

Packing in (6) is dominated by the formation of hydrogen-bonded dimers about a crystallographic inversion centre (Fig. 1). The N··O distance is 2.861 (2) Å.

Fig. 1. Formation of hydrogen-bonded dimers of (6). O1ⁱ is related to O1 by the symmetry operation $(\frac{1}{2} - x, \frac{1}{2} - y, 1 - z)$. Displacement ellipsoids enclose 50% probability surfaces. H atoms are represented by spheres of arbitrary radii.

Experimental

Compound (6) was prepared by the condensation of 2-benzoylbenzoic acid with formamide in the presence of formic acid (Vollmann, Bredereck & Bredereck, 1972).

Crystal data

$C_{14}H_{11}NO$	Cu $K\alpha$ radiation
$M_r = 209.24$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 40
C2/c	reflections
a = 16.3820 (8) Å	$\theta = 20-22^{\circ}$
b = 6.1648 (6) Å	$\mu = 0.659 \text{ mm}^{-1}$
c = 21.6676 (12) Å	T = 220(2) K
$\beta = 104.835 (3)^{\circ}$	Lath developed in (101)
$V = 2115.3 (3) \text{ Å}^3$	$0.43 \times 0.23 \times 0.04 \text{ mm}$
Z = 8	Colourless
$D_{\rm c} = 1.314 {\rm Mg m^{-3}}$	

Data collection

Stoe Stadi-4 diffractometer equipped with an Oxford Cryosystems variable temperature device (Cosier & Glazer, 1986) ω - θ scans Absorption correction: none 3393 measured reflections 1535 independent reflections

1238 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 60.05^{\circ}$ $h = -18 \rightarrow 16$ $k = -6 \rightarrow 6$ $l = -24 \rightarrow 15$ 3 standard reflections frequency: 120 min

intensity decay: 5%

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.135 \text{ e Å}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.094$ $\Delta \rho_{\min} = -0.132 \text{ e Å}^{-3}$ S = 1.048Extinction correction: 1533 reflections SHELXTL Extinction coefficient: 146 parameters H atoms not refined 0.0012(2) $w = 1/[\sigma^2(F_o^2) + (0.0549P)^2]$ Scattering factors from + 0.058PInternational Tables for where $P = (F_0^2 + 2F_0^2)/3$ Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

C1—01	1.238 (2)	C3aC7a	1.384(2)
C1—N2	1.346 (2)	C3a—C4	1.385 (2)
C1—C7a	1.479(2)	C4C5	1.385 (2)
N2—C3	1.456 (2)	C5—C6	1.386(3)
C3—C3a	1.513(2)	C6—C7	1.380(2)
C3—C31	1.516 (2)	C7—C7a	1.388 (2)
O1—C1—N2	125.8 (2)	C4C3aC3	129.8 (2)
O1—C1—C7a	127.56 (15)	C3aC4C5	117.7 (2)
N2—C1—C7a	106.60 (14)	C4C5C6	121.5 (2)
C1—N2—C3	114.19 (13)	C7—C6—C5	120.9(2)
N2—C3—C3a	101.40 (12)	C6—C7—C7a	117.6 (2)
N2—C3—C31	113.16 (13)	C3a—C7a—C7	121.6(2)
C3a—C3—C31	113.71 (13)	C3a—C7a—C1	108.30 (14)
C7a—C3a—C4	120.7 (2)	C7—C7a—C1	130.1 (2)
C7a—C3a—C3	109.50 (14)		

The presence of the low-temperature device limited $2\theta_{\rm max}$ to 120° .

Data collection: *DIF*4 (Stoe & Cie, 1990a). Cell refinement: *DIF*4. Data reduction: *REDU*4 (Stoe & Cie, 1990b). Program(s) used to solve structure: *SHELXTL* (Sheldrick, 1994). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *SHELXTL*. Software used to prepare material for publication: *SHELXTL*.

The authors thank EPSRC for provision of a four-circle diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1321). Services for accessing these data are described at the back of the journal.

References

Carlström, D., Hacksell, I., Jönsson, N. A. & Söderholm, M. (1983).
Acta Chem. Scand. Ser. B, 37, 769-773.
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Fawcett, J., Kemmitt, R. D. W., Russell, D. R., Serindag, O. & Gok, Y. (1993). *Acta Cryst.* C49, 1434–1436.

Ohrt, J. M., Tsoucaris-Kupfer, D. & Lechat, P. (1978). *Acta Cryst*. B34, 2059-2061.

Ravikumar, K. (1994). Acta Cryst. C50, 589-592.

Rodier, P. N., Martin, C., Miocque, M., Mettey, Y. & Vierfond, J.-M. (1988). *Acta Cryst*. C44, 2131-2133.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stoe & Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe & Cie, Darmstadt, Germany.

Vollmann, H.-J. W., Bredereck, K. & Bredereck, H. (1972). Chem. Ber. 105, 2933-2954.

Acta Cryst. (1997). C53, 1099-1101

3,4-Etheno-5-methoxymethyl-2'-deoxycytidine†

Gerald F. Audette, a Wajdi M. Zoghaib, b Guy Tourigny, b Sagar V. Gupta c and Louis T. J. Delbaere a

^aDepartment of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5, ^bDepartment of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and ^cDepartment of Veterinary Physiological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4. E-mail: delbaere@sask.usask.ca

(Received 6 November 1996; accepted 7 March 1997)

Abstract

In the title compound, $C_{13}H_{17}N_3O_5$, the deoxyribose sugar ring adopts a C2'-exo-C3'-endo symmetrical half-chair conformation $(\frac{3}{2}T)$, with pseudorotational parameters of $P=2.54\,(1)^\circ$ and $\tau_m=27.82\,(7)^\circ$. The deoxyribose sugar ring is in the anticlinal (-ac) conformation with respect to the base $[\chi=-93.2\,(4)^\circ]$. The exocyclic side chain at C5' is in the gg conformation $[\gamma=57.2\,(3)^\circ]$. The methoxymethyl side chain at C5 is oriented towards the exocyclic side chain at C5'.

Comment

The title compound (3,4-etheno-MMdCyd), (I), is a structural analogue of 5-methoxymethyl-2'-deoxy-

† Alternative name: 6-(4-hydroxy-5-hydroxymethyltetrahydrofuran-2-yl)-8-(methoxymethyl)imidazo[1,2-c][1,3]diazin-5(6H)-one.